Равномерное распределение. Непрерывная величина Х распределена равномерно на интервале (a, b), если все ее возможные значения находятся на этом интервале и плотность распределения вероятностей постоянна: (29)
Для случайной величины Х , равномерно распределенной в интервале (a, b) (рис. 4), вероятность попадания в любой интервал (x1, x2), лежащий внутри интервала (a, b), равна: (30)
Ris4_mat_stat.gif
Рис. 4. График плотности равномерного распределения Примерами равномерно распределенных величин являются ошибки округления. Так, если все табличные значения некоторой функции округлены до одного и того же разряда , то выбирая наугад табличное значение, мы считаем, что ошибка округления выбранного числа есть случайная величина, равномерно распределенная в интервале
Нормальное распределение, также называемое распределением Гаусса, —распределение вероятностей, которое играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех. Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений, в природе чаще всего встречается именно нормальное распределение — отсюда и произошло одно из его названий.
Нормальное распределение зависит от двух параметров — смещения имасштаба, то есть, является, с математической точки зрения, не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения). Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.
Экспоненциальное распределение играет важную роль в задачах телекоммуникации, так как позволяет моделировать интервалы времени между наступлением событий. Из экспоненциальных величин строятся другие важные величины, например, случайные величины, имеющие распределение Эрланга. Мы говорим, что случайная величина имеет экспоненциальное (показательное)распределение, если (0) Пусть – время ожидания события, тогда из формулы (0) следует, что вероятность того, что это событие наступит раньше x равна . Этот удобный формализм позволяет описывать моменты возникновения случайных событий. Параметр λ оценивается на основе реальных данных. Плотность экспоненциального распределения имеет вид , (1) где λ>0 —положительная постоянная, называемая параметром экспоненциального распределения. Заметьте, экспоненциальное распределение сосредоточено на положительной полуоси. Экспоненциальная случайная величина принимает положительные значения. Среднее значение равно
Дисперсия равна
Из формулы (0) следует:
Иными словами, вероятность того, что следующее событие наступит через время больше , равна
Распределения непрерывных случайных величин
Равномерное распределение. Непрерывная величина Х распределена равномерно на интервале (a, b), если все ее возможные значения находятся на этом интервале и плотность распределения вероятностей постоянна:Для случайной величины Х , равномерно распределенной в интервале (a, b) (рис. 4), вероятность попадания в любой интервал (x1, x2), лежащий внутри интервала (a, b), равна:
Рис. 4. График плотности равномерного распределения
Примерами равномерно распределенных величин являются ошибки округления. Так, если все табличные значения некоторой функции округлены до одного и того же разряда
Нормальное распределение, также называемое распределением Гаусса, —распределение вероятностей, которое играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех. Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений, в природе чаще всего встречается именно нормальное распределение — отсюда и произошло одно из его названий.
Нормальное распределение зависит от двух параметров — смещения имасштаба, то есть, является, с математической точки зрения, не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).
Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.
Экспоненциальное распределение играет важную роль в задачах телекоммуникации, так как позволяет моделировать интервалы времени между наступлением событий.
Из экспоненциальных величин строятся другие важные величины, например, случайные величины, имеющие распределение Эрланга.
Мы говорим, что случайная величина
Пусть
Параметр λ оценивается на основе реальных данных.
Плотность экспоненциального распределения имеет вид
где λ>0 —положительная постоянная, называемая параметром экспоненциального распределения.
Заметьте, экспоненциальное распределение сосредоточено на положительной полуоси.
Экспоненциальная случайная величина принимает положительные значения.
Среднее значение